Consistent Dirichlet Boundary Conditions for Numerical Solution of Moving Boundary Problems
نویسندگان
چکیده
We consider the imposition of Dirichlet boundary conditions in the finite element modelling of moving boundary problems in one and two dimensions for which the total mass is prescribed. A modification of the standard linear finite element test space allows the boundary conditions to be imposed strongly whilst simultaneously conserving a discrete mass. The validity of the technique is assessed for a specific moving mesh finite element method, although the approach is more general. Numerical comparisons are carried out for massconserving solutions of the porous medium equation with Dirichlet boundary conditions and for a moving boundary problem with a source term and time-varying mass.
منابع مشابه
A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملSolution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method
The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...
متن کاملIMPOSITION OF ESSENTIAL BOUNDARY CONDITIONS IN ISOGEOMETRIC ANALYSIS USING THE LAGRANGE MULTIPLIER METHOD
NURBS-based isogeometric analysis (IGA) has currently been applied as a new numerical method in a considerable range of engineering problems. Due to non-interpolatory characteristic of NURBS basis functions, the properties of Kronecker Delta are not satisfied in IGA, and as a consequence, the imposition of essential boundary condition needs special treatment. The main contribution of this study...
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کامل